历史上至今未解开的数学超级难题老张教育

自古希腊始,数学作为理性科学的核心逐渐被人们重视。经历年理性的发展之后,得益于一些重大基础数学问题的突破,人类探索和发明的数学知识渐渐转化为生产力,终将自身带入了信息文明的时代。尽管如此,一些悬而未决的数学问题历经千年仍顽固地为自身保守着秘密。每一个问题的解决,也许就意味着找到一座隐匿着未知真理的巨大宝藏。

比如数学中最古老的未解之谜——孪生素数猜想,就是由古希腊著名数学家欧几里得(Euclid)提出,距今已近年。关于该问题最重大的突破由华人数学家张益唐于年独自完成。

年,作为当时世界数学领域的领袖人物,德国大数学家希尔伯特(Hilbert)提出了雄心勃勃的23个数学问题,其高瞻远瞩的目光在很大程度上为整个20世纪的数学发展绘制了宏伟的蓝图。下面笔者收集整理一下有关历史上还有数学题现在还没有解开,有待于智慧者不断去征服。

这些数学题曾经“坑爹”到无以复加!

几千年以来,人类在研究数学的过程中,提出并解决了很多难题。有些数学难题不仅玩坏了很多研究者,其解决的过程或结果也让人觉得十分坑爹。

第五名古希腊三大几何难题

这是三个尺规作图题,即只使用圆规和没有刻度的直尺作出下面的东西:

1、倍立方体:求作一立方体的边,使该立方体的体积为给定立方体的两倍

2、化圆为方:作一正方形,使其与一给定的圆面积相等

3、三等分角:分一个给定的任意角为三个相等的部分

解决:

问题提出大约在公元前年,直到年开始,这三个问题才陆续“解决”,历经两千多年。化圆为方问题在林德曼证明π是超越数后“解决”。其他两个则是要利用伽罗华的抽象代数理论“解决”,而这个理论在刚出炉时,柏松大牛的评语是:“完全不能理解”。而最后的解决方式,也就是结论,则是“没有结果的结果”——没有任何尺规作图办法完成上面三个中的任何一个,它们都是作图不能问题。

第四名五次方程求根公式

我们从初中开始就开始学习二次方程ax+bx+c=0的求根公式。先求判别式Δ,然后对Δ进行讨论,得到方程的根,于是二次方式的求根公式就得到了。其实数学也经过了长期的研究,得到了三次及四次方程的求根公式。而对于五次方程ax^5+bx^4+cx+dx+ex+f=0,却一直没找到求根公式。

解决:

一个叫阿贝尔的数学家在他21岁那年发现,五次方程求根公式是不存在的(又是坑爹的不存在)。他把他的结果印成了小册子进行了分发。据说高斯和柯西两位大数学家都得到了过这个小册子,高斯没认真看,因他觉得阿贝尔不可能解决作为“数学王子”的他都没办法解决的问题,而柯西连看都没看就把小册子当废纸扔了。后来,因为一直没得到认可,贫病交加的阿贝尔27岁时在绝望中死去。这位有如此重大发现的数学家,生前最大的理想是成为一所大学的讲师,而这个愿望到死也没能实现。

第三名四色定理

四色定理的通俗版本是:“任意一个无飞地的地图都可以用四种颜色染色,使得没有两个相邻国家染的颜色相同。”这最初是由法兰西斯·古德里在年提出的猜想。当然,作为一个数学定理,四色定理有着更为严谨的数学叙述,是关于拓扑或者图论,这里就不细述了。

解决:

四色猜想刚提出时,并不被数学家们重视,比如哈密顿就说“不会尝试解决这个四色问题”。后来在德·摩根的不断推动下,才开始进入数学家们的视野。历史上,曾有一个叫肯普的伦敦律师声名证明了这个猜想,他的证明几乎已经得到了学界的承认,甚至已经得到《自然》杂志的确认。对于一个非专业人士解决的问题,人们开始认为他不难。那个时候,有一所大学给学生留下的习题是“证明四色猜想,且不得超过一页纸的文字,30行算式以及一页纸的图”。而剧情的反转在这个证明公开的11年后,有人发现了肯普证明无法修补的错误,而使四色猜想重新成为公开问题。年,经过IBM电脑夜以继日近两个月,小时的验证,四色猜想被证明,成为四色定理。回想一下那个30行的要求,哆嗒数学网的小编只想说,写作业的学生们,你们还好吗?

第二名连续统假设

康托尔创立集合论的同时,也发明了一种比较无穷集合元素个数多少的方法。他把无穷集合中的元素个数叫做基数。他研究了很多无穷集合的基数,发现自然数、整数、有理数、整系数方程等等,它们的基数都是一样多的,而实数、无理数、复数、三维空间中的点,它们也是一样多的,而且比自然数要多。他所发现的所有集合,它们的个数都不会在自然数的基数和实数基数之间。于是他猜想:没有一个集合,它的基数在自然数基数和实数基数之间,这就是连续统假设。

解决:

康托尔为这个猜想几乎耗费了一生,他几次声称证明了连续统假设,但都发现自己的错误又将其声明收回。康托尔后来产生精神问题不知道和这个猜想的证明的有没有关系。问题在年终于有了个结论:连续统假设在数学家公认的ZFC公理系统下,即不能证明是真命题,也不能证明是假命题。而在康托尔那个年代,还没有公理化集合论的概念,也就是说他的年代是无论如何也解决不了的。

第一名费马大定理

X^n+Y^n=Z^n这个方程,在n大于2的时候没有正整数解!这就是费马大定理。

解决:

费马是在年阅读一本书时,在书中写注解时留下这个猜想的,同时,他还写道:“对此定理,我有一个美妙的证明,但因书中空白太小写不下。”这让痴迷数学的研究者们,对于这个空白充满了好奇和不甘。问题终于在多年后的年被英国数学家怀尔斯证明。证明过程用到模型式等,在费马年代根本没有方法。怀尔斯证明的第一稿用了多页,在修改精简后,缩至多页,发表于数学最顶级的杂志《数学年刊》。有人感慨,那个空白的事,简直就是费马挖下的大坑啊。

千禧年大奖难题,21世纪数学星空下的擎天七柱

年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得一百万美元的奖励。其中,庞加莱猜想已经在年得到了解决,但其他6个问题仍未解决。

克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是在于对数学发展具有中心意义的重大难题,这也是数学家们梦寐以求而期待解决的。

“千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。“千年大奖问题”将会改变新世纪数学发展的历史进程。

1.NP完全问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为7乘上,那么你就可以用一个袖珍计算器容易验证这是对的。

人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于年陈述的。

2.霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧变得如此有用,使得它可以用许多不同的方式来推广,最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,这些称作霍奇闭链的部件,实际上是称作代数闭链的几何部件的(有理线性)组合。最新的研究则表明,霍奇猜想与广义相对论、量子纠缠和庞加莱猜想在更深的层次上有可能融为一体。对它的深刻认知,有助于了解宇宙中最深邃奇妙的物质构成。

3.庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

在年11月和年7月之间,俄罗斯的数学家格里戈里·佩雷尔曼在发表了三篇论文预印本,并声称证明了几何化猜想。

在佩雷尔曼之后,先后有2组研究者发表论文补全佩雷尔曼给出的证明中缺少的细节。这包括密西根大学的布鲁斯·克莱纳和约翰·洛特、哥伦比亚大学的约翰·摩根和麻省理工学院的田刚。

年8月,第25届国际数学家大会授予佩雷尔曼菲尔兹奖。数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。

4.黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数,它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式,然而,德国数学家黎曼(~)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,,,个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

黎曼假设之否认:其实虽然因素数分布而起,但是却是一个歧途,因为伪素数及素数的普遍公式告诉我们,素数与伪素数由它们的变量集决定的。

5.杨-米尔斯(Yang-Mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。

基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。

尽管如此,在数学上严格描述重粒子的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

6.纳卫尔-斯托可方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少,其挑战在于我们要对数学理论作出实质性的进展,才能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

7.BSD猜想

数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。

事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。

当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。

特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

昔日,希尔伯特以一己之力提出23个问题,缔造了20世纪数学的辉煌。我们也有理由相信,百年之后的七大难题,会再一次成为21世纪数学星空下的擎天七柱,帮助人类文明抵达深远璀璨的未来。

克拉茨猜想

任取一个正整数,如果是偶数,将其除以2。如果是奇数,将其乘以3再加1,然后重复这个过程,最后结果都是1。

这个问题就是著名的“克拉茨猜想”。它几乎可以说是数学史上未解问题中表达形式最简单的一个,也因此成为数学这棵参天大树上最诱人的那颗果实。

克拉茨猜想据称是上世纪30年代由德国数学家LotharCollatz提出的。但其具体出处不详,已知的,从西拉古斯大学大学传到贝尔实验室,再到芝加哥大学。因早期有众多的传播者,所以在传播过程中,克拉茨猜想收获了许多名字:3n+1猜想、奇偶归一猜想、乌拉姆(Ulam)问题、角谷猜想等。

不少资深数学家警告称,这个问题简直有毒,堪称魅惑十足的“海妖之歌”:你走进来就再也出不去,再也无力做出其他任何有意义的成果。密歇根大学数学家、克拉茨猜想问题专家JeffreyLagarias表示:“这是一个危险的问题,很多人为其如痴如醉,但目前看真的不可能解决。”

但不信邪的人总是有的。陶哲轩就是其中之一,他已经取得了迄今为止在克拉茨猜想问题上走的最远的成果。

年9月8日,陶哲轩在个人博客上贴出了一份证明,表明了至少对绝大部分自然数,克拉茨猜想都是正确的。尽管这份证明算不上是完整证明,但已经算是在这个堪称“有毒”的问题上取得的重大进展。



转载请注明地址:http://www.1xbbk.net/jwbzn/2688.html


  • 上一篇文章:
  • 下一篇文章:
  • 网站简介 广告合作 发布优势 服务条款 隐私保护 网站地图 版权声明
    冀ICP备19027023号-7